Analyses of the Leaf and Resin Essential Oils of *Pinus sibirica* (Rupr.) Mayr from Mongolia

Sandui Shatar Chemistry Institute, Mongolian Academy of Science Ulan-Bator 51 P.O. Box 179, Mongolia

Robert P. Adams*

Plant Biotechnology Center, Baylor University
Box 669, Gruver, TX 79040, USA

Received: May 1995 Revised: August 1995

ABSTRACT: The leaf and resin essential oils of *Pinus sibirica* were analyzed by GC/MS. The leaf oil was dominated by α -pinene (57.2%), β -phellandrene (19.7%), and β -pinene (7.7%) with lesser amounts of limonene (2.2%), myrcene (2.1%), terpinolene (1.3%) and camphene (1.3%). The resin oil contained α -pinene (39.1%), δ -3-carene (23.0%), and β -pinene (9.1%) with moderate amounts of cembrene (4.9%), β -phellandrene (2.1%), camphene (1.7%) and terpinolene (1.3%).

KEY WORD INDEX: *Pinus sibirica*, Pinaceae, essential oil composition, leaf oil, resin oil, α -pinene, β -phellandrene, δ -3-carene.

PLANT NAME: Pinus sibirica (Rupr.) Mayr, common name: Siberian pine, sibirin khush (Mongolia), kedr sibirskii (Russia).

SOURCE: Foliage consisted of mixed years leaves from several trees and the resin was collected from natural resin bleeds. All samples were collected in the Bogd-Ula Mountains near Ulan Bator (S. Shatar, 57/94). Voucher specimens have been deposited at the herbarium at the Mongolian Academy of Science, Ulan Batar.

PLANT PART: Fresh leaves were steam distilled in a circulatory Clevenger-type apparatus (1) for 2 h to produce a clear oil with yields of 0.9-1.1% (fresh weight basis). Resin was steam distilled (3 h) to produce a clear oil of 10-14% yield, based on the resin weight at the time of extraction.

PREVIOUS WORK: Shatar (2,3) examined the leaf oil from the Mongolian Khentein Mountains. He found the leaf oil to be dominated by α -pinene (see Table I). Other studies (4-7) have reported minor amounts of ylangene, longifolene, caryophyllene, α - and γ -muurolene, and bisabolene in the leaves. The main components of the resin oil, previously reported (8), are α - and β -pinene, limonene, β -phellandrene and caryophyllene. No complete analyses of the leaf and resin oils have be reported as far as known.

^{*}Address for correspondence

Table I. Composition of the volatile leaf and resin oils of Pinus sibirica from Mongolia

KI	Compound	Percentage	
		Leaf oil	Resin oi
926	tricyclene	0.1	0.2
931	α-thujene		0.2
939	α-pinene	57.2	39.1
	•		1.7
953	camphene	1.3	
957	thuja-2,4(10)-diene	t	0.4
973	unidentified monoterpene	-	0.9
976	sabinene	0.2	-
980	β-pinene	7.7	9.1
991	myrcene	2.1	0.6
001	δ-2-carene		t
		0.2	0.1
005	α-phellandrene		
011	δ-3-carene	8.0	23.0
018	α-terpinene	0.1	0.1
022	o-cymene	-	0.1
026	p-cymene	-	0.5
027	sylvestrene	-	0.2
027	limonene	2.2	0.5
			2.1
1031	β-phellandrene	19.7	2.1
062	γ-terpinene	0.1	0.2
082	m-cymenene	-	t
088	terpinolene	1.3	1.3
112	α-fenchol	•	t
121	cis-p-menth-2-en-1-ol	t	_
		ι	0.2
125	α-campholenal	-	0.2
139	trans-pinocarveol	0.1	0.3
143	camphor	t	0.4
148	camphene hydrate	-	0.1
153	citronellal	0.1	_
160	p-mentha-1,5-dien-8-ol	t	_
165	borneol	t	0.8
173	isopinocamphone	-	t
177	terpinen-4-ol	0.2	0.5
180	m-cymen-8-ol	-	0.1
183	p-cymen-8-oi	-	0.1
186	m-α-terpineol	•	0.9
189	α-terpineol	0.4	1.0
1400			^.
193	myrtenal	<u>-</u>	0.1
195	methyl chavicol	0.1	-
204	verbenone	•	0.2
217	trans-carveol	-	t
228	citronellol	0.4	0.1
235	methyl thymol	0.3	0.1
1285	bornyl acetate	0.8 0.1	0.6
1291	2-undecanone		-
1350	α-terpinyl acetate	0.2	t
351	α-longipinene	t	0.9

Table I. (Cont.)

KI	Compound	Percentage	
		Leaf oil	Resin oi
1372	α-ylangene	-	0.1
1376	α-copaene	-	0.2
1383	geranyl acetate	t	-
1398	β-longipinene	-	0.1
1402	longifolene	-	0.6
1418	β-caryophyllene	0.1	0.9
1439	α-guaiene	-	t
1454	α-humulene	-	0.1
1458	(E)-β-farnesene	t	0.3
1467	9-epi-(E)-caryophyllene	t	t
1477	γ-muurolene	t	0.7
1480	germacrene D	0.2	-
1493	δ-decalactone	0.6	-
1494	bicyclogermacrene	-	t
1499	α-muurolene	0.1	0.9
1508	β-bisabolene	0.2	0.7
1513	γ-cadinene	t	-
1524	δ-cadinene	0.3	0.3
1564	(E)-nerolidol	-	t
1576	spathulenol	0.2	0.1
1581	caryophyllene oxide	-	0.1
1627	1-epi-cubenol	t	0.1
1640	epi- α -cadinol (=T-cadinol)	0.3	t
1641	epi-α-muurolol	t	t
1645	α-muurolol (=torreyol)	-	0.2
1653	α-cadinol	0.5	-
1683	α-bisabolol	0.2	0.1
1929	cembrene	0.2	4.9
1942	cembrene isomer	t	1.6

KI = Kovat's Index on DB-5(=SE54) column. Compositional values less than 0.1% are denoted as traces (t). Unidentified components less than 0.5% are not reported

PRESENT WORK: GC/MS analysis was made using a Finnigan Ion Trap 800 instrument fitted with a 30 m x 0.26 mm DB-5 fused silica capillary column (film thickness: 0.25 μ m). The column was programmed from 60°-240°C at 30°C/min. Oil components were identified by a combination of retention times and mass spectral data (9). Table I shows the composition of the oil of *P. sibirica* leaf and resin oils. The major constituents of the leaf oil were α -pinene (57.2%), β -phellandrene (19.7%), and β -pinene (7.7%). Limonene (2.2%), myrcene (2.1%), terpinolene (1.3%) and camphene (1.3%) were found in lesser amounts. The major components of the resin oil were α -pinene (39.1%), δ -3-carene (23.0%), and β -pinene (9.1%) with moderate amounts of cembrene (4.9%), β -phellandrene (2.1%), camphene (1.7%) and terpinolene (1.3%).

Mass spectra of unidentified constituents: [ITMS, m/z (rel. int.): KI **973**, 41(21), 51(13), 65(10), 77(13), 91(53), 105(6), 119(100), 134(8), monoterpene; KI **1484**, 41(100), 55(33), 71(30), 81(9), 99(43), 105(9), 121(7), 142(8), 161(4), 185(5); KI **1944**, 41(100), 55(28), 67(41), 79(46), 91(41), 105(31), 119(22), 133(17), 161(25), 229(9), 257(4), 272(2), cembrene isomer.

REFERENCES

- R. P. Adams, Cedar wood oil Analysis and properties. In: Modern Methods of Plant Analysis: Oils and Waxes. Edits., H. F. Linskins and J. F. Jackson, pp 159-173, Springer-Verlag, Berlin (1991).
- S. Shatar, Essential oil of evergreen plants of Mongolian People's Republic. In: Evergreen Plants Essential Oils. Edit., T. Baldan, pp. 112-113, Mongolian Academy of Science Press, Ulan Batar (1975).
- S. Shatar, Analyse der ätherischen Öle aus den Nadeln einiger Koniferen aus der Mongolischen Volksrepublik. Pharmazie, 41, 155-156 (1986).
- 4. L. N. Volski, Zh. Dubovenko, V. A. Pentegova and N. A. Gershtain, Studies of the composition of essential oils of some species of siberian conifers by gas-liquid chromatography. Khim. Prirod. Soed., 6, 382-384 (1965).
- L. I. Gornostaeva, S. M. Repyakh and E. D. Levin, Monoterpenes of essential oils from siberian coniferous species. Khim. Prirod. Soed., 6, 784-786 (1977).
- L. I. Gornostaeva, S. M. Repyakh and E. D. Levin, Sesquiterpene content of coniferous essential oils from the family Pinaceae. Khim Drev., 5, 111-113 (1987).
- 7. E. D. Levin and S. M. Repyakh, Pererabotka drevesnoi zeleni. Lesprom (Wood Industry) Moscow (1984).
- 8. A. V. Chudnyi and M. I. Dokuchaeva, Inheriting turpentine oil composition by progeny of grafted trees. Lesovedenie, 2, 34-39 (1979).
- 9. R. P. Adams, *Identification of Essential Oils by Gas Chromatography/Mass Spectroscopy*. Allured Publ. Corp., Carol Stream, Illinois (1995).